يمتلك الجيولوجيون ماين كرافت خاصة بهم: كيفية بناء ما لا تعرفه مما تعرفه



هذه بداية قصة حول كيفية غزو الرياضيات للجيولوجيا لأول مرة ، وكيف أتى متخصص في تكنولوجيا المعلومات وبرمج كل شيء ، وبالتالي خلق مهنة جديدة لـ "الجيولوجي الرقمي". هذه قصة حول كيفية اختلاف النمذجة العشوائية عن كريجينج. إنها أيضًا محاولة لإظهار كيف يمكنك كتابة أول برنامج جيولوجي بنفسك ، وربما ، بطريقة ما ، تحويل مجال الهندسة الجيولوجية والبترولية.



دعنا نحسب كمية الزيت الموجودة



, , , , . , , . , (, ). , , , .



, . , h, ϕ s, «» S, hϕsS ( -) . ( , )



— , , , , , , , .



V, uV. ϕ(u) u, s(u) — . Vs(u)ϕ(u)du — . ϕ(u), s(u) ( , , ) V. V. , , ( , , ).



. , , , , . — , , . — , , , . , , .



. ; , , , .





, , . , , , , . , .



, ( , ). , . , , .



, , , . , , . , . . , , , - , .



, — , .





, , .. , , . , , , . — — «support». , , , , . .



, , (Krige, D.G. 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa, December 1951. pp. 119–139.). , -, , , , . , , 5×5 , , , 1 , 50 ×50 ×1 — , , ( — upscaling).





. z(u), u — . zi=z(ui).



z¯(u)=F(u,z1,..,zn,u1,...,un)



. ,



zkF(uk,z1,..,zn,u1,...,un),(1)



.





z¯=iziνi,



νi — , u ui. , . , , , .



:



z¯(u)=izi1|uui|m(i1|uui|m)1,(2)



m — . m=1 (. . 1). m=2, . , . u=uk, . , u uk, zk 1, z , z¯(uk) zk.



Python .



Inverse distance interpolation
import numpy as np
import matplotlib.pyplot as pl

# num of data
N = 5

np.random.seed(0)

# source data
z = np.random.rand(N)
u = np.random.rand(N)

x = np.linspace(0, 1, 100)
y = np.zeros_like(x)

# norm weights
w = np.zeros_like(x)

# power
m = 2

# interpolation
for i in range(N):
    y += z[i] * 1 / np.abs(u[i] - x) ** m
    w += 1 / np.abs(u[i] - x) ** m

# normalization
y /= w

# add source data
x = np.concatenate((x, u))
y = np.concatenate((y, z))
order = x.argsort()
x = x[order]
y = y[order]

# draw graph
pl.figure()

pl.scatter(u, z)
pl.plot(x, y)

pl.show()

pl.close()




1.





. , , - . , , . -, , , , ? , . , 1 . , , . , , (. . 2). .





2.





, , , , . , , . , . — , , : , , , . , .





(2) :



z¯(u)=izifi(u),(3)



, , . , , i- k- . .

, :



z¯(u)=iλic(uui),(4)



c(h) - , λi — . (4) — «», . λi. , (1):



zk=iλic(ukui),(5)



λ. Z=Cλ, Zzk, λ — , C — «» c(h) . , λ=C1Z, (6),



z¯(u)=izigi(u),(6)





gi(u)=kCi,k1c(uku).(7)



(6) ( ). (4) , , dual kriging. (6) (3), , gi . u uk, (7) , , C, , gi(ui)=1 gi(uk)=0 ik ( fi).



(. . 3). , , .



, — Python:



Kriging interpolation
import numpy as np
import matplotlib.pyplot as pl

# num of data
N = 5

np.random.seed(0)

# source data
z = np.random.rand(N) - 0.5
u = np.random.rand(N)

x = np.linspace(0, 1, 100)
y = np.zeros_like(x)

# covariance function
def c(h):
    return np.exp(-np.abs(h ** 2 * 20.))

# covariance matrix
C = np.zeros((N, N))

for i in range(N):
    C[i, :] = c(u - u[i])

# dual kriging weights
lamda = np.linalg.solve(C, z)

# interpolation
for i in range(N):
    y += lamda[i] * c(u[i] - x)

# add source data
x = np.concatenate((x, u))
y = np.concatenate((y, z))
order = x.argsort()
x = x[order]
y = y[order]

# draw graph
pl.figure()

pl.scatter(u, z)
pl.plot(x, y)

pl.show()

pl.close()




3.





, , . (5) (6) , .



, , . , , , .



. , (), , , , . , «», . , (6), , «», . , «» . : . , , , — . , , .



. , . . , , .





.



Libraries
from theory import probability
from numpy import linalg


, , .



, . () : u z(u) , ( ). , zi=z(ui).



. . , ( , ).



, - — . - , . : z(u) — ( ), z(ui), ui, , . z(u) — , .



( Cov(z1,z2)=E((z1E(z1))(z2E(z2))), ) . — . , u z(u), .



, , : Cov(z(u),z(v))=c(uv). -, c(h) — «» (4), : c(h) h . , c(500)/c(0)=0.5, 500 50 .., c(1000)=0, , .



, , , , . , , . , , . Z ζ .



Z=Aζ.



A, ( Z ). :



C=E(ZZT)=E(AζζTAT)=AE(ζζT)AT=AAT,



, ζ , , , E(ζζT) . . Z, , C, C=AAT ( ) Z ζ, , . . .



, ( , , — , ). , (. . 4).



Unconditional stochastic gaussian modeling
import numpy as np
import matplotlib.pyplot as pl

np.random.seed(0)

# source data
N = 100
x = np.linspace(0, 1, 100)

# covariance function
def c(h):
    return np.exp(-np.abs(h ** 2 * 250))

# covariance matrix
C = np.zeros((N, N))

for i in range(N):
    C[i, :] = c(x - x[i])

# eigen decomposition
w, v = np.linalg.eig(C)

A = v @ np.diag(w ** 0.5)

# you can check, that C == A @ A.T

# independent normal values
zeta = np.random.randn(N)

# dependent multinormal values
Z = A @ zeta

# draw graph
pl.figure()

pl.plot(x, Z)

pl.show()

pl.close()




4.



, , ( , ). , 5.



Conditional stochastic gaussian simulation
import numpy as np
import matplotlib.pyplot as pl

np.random.seed(3)

# source data
M = 5

# coordinates of source data
u = np.random.rand(M)

# source data
z = np.random.randn(M)

# Modeling mesh
N = 100
x = np.linspace(0, 1, N)

# covariance function
def c(h):
return np.exp(−np.abs(h ∗∗ 2250))

# covariance matrix mesh−mesh
Cyy = np.zeros ((N, N))
for i in range (N):
    Cyy[ i , : ] = c(x − x[i])

# covariance matrix mesh−data
Cyz = np.zeros ((N, M))

# covariance matrix data−data
Czz = np.zeros ((M, M))
for j in range (M):
    Cyz [:, j] = c(x − u[j])
    Czz [:, j] = c(u − u[j])

# posterior covariance
Cpost = Cyy − Cyz @ np.linalg.inv(Czz) @ Cyz.T

# lets find the posterior mean, i.e. Kriging interpolation
lamda = np.linalg.solve (Czz, z)
y = np.zeros_like(x)

# interpolation
for i in range (M):
    y += lamda[i] ∗ c(u[i] − x)

# eigen decomposition
w, v = np.linalg.eig(Cpost)
A = v @ np.diag (w ∗∗ 0.5)

# you can check, that Cpost == A@A.T

# draw graph
pl.figure()
for k in range (5):
    # independent normal values
    zeta = np.random.randn(N)
    # dependent multinormal values
    Z = A @ zeta
    pl.plot(x, Z + y, color=[(5 − k) / 5] ∗ 3)
    pl.plot(x, Z + y, color=[(5 − k) / 5] ∗ 3, label=’Stochastic realizations’)

pl.plot(x, y, ’. ’, color=’blue’, alpha=0.4, label=’Expectation(Kriging)’)
pl.scatter(u, z, color=’red ’, label=’Source data’)
pl.legend()
pl.show()
pl.close()




5.



5, . , , , , ( ). , , . — .



100500 , , , (6). , , ( , , ).



, . , . . , , , — . , . — . , - 22 — . -5 , — - . , , , !



?



. (2D 3D), ( 1D ), , , numpy .



, , 6 «» -.





6. «» -



« ». , . (« ») (. 7) (. 8).





7. «» -





8. «» -



7 8 «» , , , «» .



«»



, . , «X» «Y», . 9.





9. "X"



, . , , — ( ). (. . 10).





10. "X"



10 , , - .





, . . , . , .



, , , () , . . ( ), . . , ? , , , :



  • ;
  • ;
  • , .


, - , , , , , , .




All Articles