tl ؛ د: تحليل مبسط للمقال الذي يقدم فيه المؤلف نظريتين مثيرتين للاهتمام على أساسه وجد طريقة لاستخراج ناقلات معنى مخفية من مصفوفة التضمين. هناك دليل حول كيفية إعادة إنتاج النتائج. الكمبيوتر المحمول متاح على جيثب .
المقدمة
في هذه المقالة ، أود أن أشارك شيئًا واحدًا رائعًا وجده الباحث سانجيف أرورا في مقالته هيكل الجبر الخطي لحواس Word ، مع تطبيقات على Polysemy . وهي واحدة من سلسلة مقالات يحاول فيها تقديم أساس نظري لخصائص تضمين الكلمات. في نفس العمل ، يقترح Arora أن التضمينات البسيطة مثل word2vec أو Glove تتضمن في الواقع معاني متعددة لكلمة واحدة وتقترح طريقة لإعادة بنائها. سأحاول التمسك بالأمثلة الأصلية في جميع أنحاء المقالة.
بشكل رسمي أكثر نشير إلى متجه معين للتضمين لكلمة ربطة عنق ، والتي قد يكون لها معنى عقدة أو ربطة عنق ، أو قد يكون الفعل "ربط". يقترح Arora أنه يمكن كتابة هذا الناقل كمجموعة خطية التالية
أين هذا هو واحد من المعاني الممكنة من التعادل ، و- معامل في الرياضيات او درجة. دعونا نحاول معرفة كيف يحدث هذا.
نظرية
كتب من قبل غير رياضيات ، يرجى الإبلاغ عن جميع الأخطاء ، وخاصة في حصيرة. المصطلح.
ملاحظة صغيرة حول نظرية أرورا
نظرًا لأن العمل المبدئي لـ Arora أكثر تعقيدًا من هذا ، لم أقم بعد بإعداد مراجعة كاملة. ومع ذلك ، سنرى بإيجاز ما هو.
لذا ، تقترح Arora فكرة أن أي نص يتم إنشاؤه بواسطة نموذج تولد. في عملية عملها في كل خطوة زمنية يتم إنشاء الكلمة ... يتكون النموذج من ناقل السياق وناقلات التضمين . (dimensions), , . , , - (, ), — (, ), , , — .
, .. - , . . , . : " " , " ". , "": , .
, . , , , .
: , . ,
— , — , — partition function. , , .
. , , : , , , . Y, X .
. - , - .
, , . , , "". :
, ", , , ". , , , ", , , " , " " .
, . , , . , ( , ). , , . .
1
, . ,
, . . . . , , . , , ( ). , , out-of-vocabulary , , .
, . , SIF . , , , . , SIF k, , , TF-IDF.
, , 1, . , - , , .
. , - , , . :
- . .
- , , SIF 20 , . , n — .
- SIF .
- SIF
, .. . 1/3 , A 2\3 . . .
#paragraphs | 250k | 500k | 750k | 1 million |
---|---|---|---|---|
cos similarity | 0.94 | 0.95 | 0.96 | 0.96 |
2
, . - , . , , .. , , tie_1 tie_2, tie_1 — , tie2 — .
, , $<!-- math>$inline$ \upsilon{w{s1} } \ upilon{w_{s2} } $inline$</math -->$. , , , ,
and . , , .
, , , , ? , . . , . , , . , , , , , . , , , (inner product) . , , - (, , , ), , ! .
. ? . , , ,
— .
, k (sparsity parameter), m — .. , . k-SVD. , . , , ( , ). , , - , , , . .
, , .
import numpy as np
from gensim.test.utils import datapath, get_tmpfile
from gensim.models import KeyedVectors
from gensim.scripts.glove2word2vec import glove2word2vec
from scipy.spatial.distance import cosine
import warnings
warnings.filterwarnings('ignore')
tmp_file = get_tmpfile("test_word2vec.txt")
_ = glove2word2vec("/home/astromis/Embeddings/glove.6B.300d.txt", tmp_file)
model = KeyedVectors.load_word2vec_format(tmp_file)
embeddings = model.wv
index2word = embeddings.index2word
embedds = embeddings.vectors
print(embedds.shape)
(400000, 300)
400000 .
2. k-svd
. ksvd.
!pip install ksvd
from ksvd import ApproximateKSVD
Requirement already satisfied: ksvd in /home/astromis/anaconda3/lib/python3.6/site-packages (0.0.3)
Requirement already satisfied: numpy in /home/astromis/anaconda3/lib/python3.6/site-packages (from ksvd) (1.14.5)
Requirement already satisfied: scikit-learn in /home/astromis/anaconda3/lib/python3.6/site-packages (from ksvd) (0.19.1)
, 2000 5.
: 10000 . , , , , .
%time
aksvd = ApproximateKSVD(n_components=2000,transform_n_nonzero_coefs=5, )
embedding_trans = embeddings.vectors
dictionary = aksvd.fit(embedding_trans).components_
gamma = aksvd.transform(embedding_trans)
CPU times: user 4 µs, sys: 0 ns, total: 4 µs
Wall time: 9.54 µs
#gamma = np.load('./data/mats/.npz')
# dictionary_glove6b_300d.np.npz - whole matrix file
dictionary = np.load('./data/mats/dictionary_glove6b_300d_10000.np.npz')
dictionary = dictionary[dictionary.keys()[0]]
#print(gamma.shape)
print(dictionary.shape)
(2000, 300)
#np.savez_compressed('gamma_glove6b_300d.npz', gamma)
#np.savez_compressed('dictionary_glove6b_300d.npz', dictionary)
3.
, . .
embeddings.similar_by_vector(dictionary[1354,:])
[('slave', 0.8417330980300903),
('slaves', 0.7482961416244507),
('plantation', 0.6208109259605408),
('slavery', 0.5356900095939636),
('enslaved', 0.4814416170120239),
('indentured', 0.46423888206481934),
('fugitive', 0.4226764440536499),
('laborers', 0.41914862394332886),
('servitude', 0.41276970505714417),
('plantations', 0.4113745093345642)]
embeddings.similar_by_vector(dictionary[1350,:])
[('transplant', 0.7767853736877441),
('marrow', 0.699995219707489),
('transplants', 0.6998592615127563),
('kidney', 0.6526087522506714),
('transplantation', 0.6381147503852844),
('tissue', 0.6344675421714783),
('liver', 0.6085026860237122),
('blood', 0.5676015615463257),
('heart', 0.5653558969497681),
('cells', 0.5476219058036804)]
embeddings.similar_by_vector(dictionary[1546,:])
[('commons', 0.7160810828208923),
('house', 0.6588335037231445),
('parliament', 0.5054076910018921),
('capitol', 0.5014163851737976),
('senate', 0.4895153343677521),
('hill', 0.48859673738479614),
('inn', 0.4566132128238678),
('congressional', 0.4341348707675934),
('congress', 0.42997264862060547),
('parliamentary', 0.4264637529850006)]
embeddings.similar_by_vector(dictionary[1850,:])
[('okano', 0.2669774889945984),
('erythrocytes', 0.25755012035369873),
('windir', 0.25621023774147034),
('reapportionment', 0.2507009208202362),
('qurayza', 0.2459488958120346),
('taschen', 0.24417680501937866),
('pfaffenbach', 0.2437630295753479),
('boldt', 0.2394050508737564),
('frucht', 0.23922981321811676),
('rulebook', 0.23821482062339783)]
! , . . , , . "tie" "spring" .
itie = index2word.index('tie')
ispring = index2word.index('spring')
tie_emb = embedds[itie]
string_emb = embedds[ispring]
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, tie_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:15]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #162: win victory winning victories wins won 2-1 scored 3-1 scoring
Atom #58: game play match matches games played playing tournament players stadium
Atom #237: 0-0 1-1 2-2 3-3 draw 0-1 4-4 goalless 1-0 1-2
Atom #622: wrapped wrap wrapping holding placed attached tied hold plastic held
Atom #1899: struggles tying tied inextricably fortunes struggling tie intertwined redefine define
Atom #1941: semifinals quarterfinals semifinal quarterfinal finals semis semi-finals berth champions quarter-finals
Atom #1074: qualifier quarterfinals semifinal semifinals semi finals quarterfinal champion semis champions
Atom #1914: wearing wore jacket pants dress wear worn trousers shirt jeans
Atom #281: black wearing man pair white who girl young woman big
Atom #1683: overtime extra seconds ot apiece 20-17 turnovers 3-2 halftime overtimes
Atom #369: snap picked snapped pick grabbed picks knocked picking bounced pulled
Atom #98: first team start final second next time before test after
Atom #1455: after later before when then came last took again but
Atom #1203: competitions qualifying tournaments finals qualification matches qualifiers champions competition competed
Atom #1602: hat hats mask trick wearing wears sunglasses trademark wig wore
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, string_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:15]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #528: autumn spring summer winter season rainy seasons fall seasonal during
Atom #1070: start begin beginning starting starts begins next coming day started
Atom #931: holiday christmas holidays easter thanksgiving eve celebrate celebrations weekend festivities
Atom #1455: after later before when then came last took again but
Atom #754: but so not because even only that it this they
Atom #688: yankees yankee mets sox baseball braves steinbrenner dodgers orioles torre
Atom #1335: last ago year months years since month weeks week has
Atom #252: upcoming scheduled preparations postponed slated forthcoming planned delayed preparation preparing
Atom #619: cold cool warm temperatures dry cooling wet temperature heat moisture
Atom #1775: garden gardens flower flowers vegetable ornamental gardeners gardening nursery floral
Atom #21: dec. nov. oct. feb. jan. aug. 27 28 29 june
Atom #84: celebrations celebration marking festivities occasion ceremonies celebrate celebrated celebrating ceremony
Atom #98: first team start final second next time before test after
Atom #606: vacation lunch hour spend dinner hours time ramadan brief workday
Atom #384: golden moon hemisphere mars twilight millennium dark dome venus magic
! , , , .
, , . , , .
. fastText, RusVectores. 300.
fasttext_model = KeyedVectors.load('/home/astromis/Embeddings/fasttext/model.model')
embeddings = fasttext_model.wv
index2word = embeddings.index2word
embedds = embeddings.vectors
embedds.shape
(164996, 300)
%time
aksvd = ApproximateKSVD(n_components=2000,transform_n_nonzero_coefs=5, )
embedding_trans = embeddings.vectors[:10000]
dictionary = aksvd.fit(embedding_trans).components_
gamma = aksvd.transform(embedding_trans)
CPU times: user 1 µs, sys: 2 µs, total: 3 µs
Wall time: 6.2 µs
dictionary = np.load('./data/mats/dictionary_rus_fasttext_300d.npz')
dictionary = dictionary[dictionary.keys()[0]]
embeddings.similar_by_vector(dictionary[1024,:], 20)
[('', 0.6854609251022339),
('', 0.6593252420425415),
('', 0.6360634565353394),
('', 0.5998549461364746),
('', 0.5971367955207825),
('', 0.5862340927124023),
('', 0.5788886547088623),
('', 0.5788123607635498),
('', 0.5623885989189148),
('', 0.5610565543174744),
('', 0.5551878809928894),
('', 0.551397442817688),
('', 0.5356274247169495),
('', 0.531707227230072),
('', 0.5174376368522644),
('', 0.5131562948226929),
('', 0.5120065212249756),
('', 0.5077806115150452),
('', 0.5074601173400879),
('', 0.5068254470825195)]
embeddings.similar_by_vector(dictionary[1582,:], 20)
[('', 0.45191124081611633),
('', 0.4515378475189209),
('', 0.4478364586830139),
('', 0.4280813932418823),
('', 0.41220104694366455),
('', 0.40772825479507446),
('', 0.4047147035598755),
('', 0.4030646085739136),
('', 0.39368513226509094),
('', 0.39012178778648376),
('', 0.3866344690322876),
('', 0.37968817353248596),
('', 0.3728911876678467),
('', 0.3663109242916107),
('', 0.3640827238559723),
('', 0.3474290072917938),
('', 0.3473641574382782),
('', 0.3468908369541168),
('', 0.34586742520332336),
('', 0.34555742144584656)]
embeddings.similar_by_vector(dictionary[500,:], 20)
[('', 0.6874514222145081),
('-', 0.5172050595283508),
('', 0.46720415353775024),
('', 0.44713956117630005),
('', 0.4144558310508728),
('', 0.40545403957366943),
('', 0.4030636250972748),
('-', 0.4016447067260742),
('', 0.38331469893455505),
('', 0.37292781472206116),
('', 0.3625457286834717),
('', 0.35121074318885803),
('', 0.3504621088504791),
('', 0.34097471833229065),
('', 0.33320850133895874),
('', 0.3277249336242676),
('', 0.3266661763191223),
('', 0.31865227222442627),
('::', 0.30150306224823),
('', 0.2975207567214966)]
itie = index2word.index('')
ispring = index2word.index('')
tie_emb = embedds[itie]
string_emb = embedds[ispring]
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, string_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:10]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #185:
Atom #1217: -
Atom #1213:
Atom #1978:
Atom #1796:
Atom #839:
Atom #989:
Atom #414:
Atom #1140: -
Atom #878:
simlist = []
for i, vector in enumerate(dictionary):
simlist.append( (cosine(vector, tie_emb), i) )
simlist = sorted(simlist, key=lambda x: x[0])
six_atoms_ind = [ins[1] for ins in simlist[:10]]
for atoms_idx in six_atoms_ind:
nearest_words = embeddings.similar_by_vector(dictionary[atoms_idx,:])
nearest_words = [word[0] for word in nearest_words]
print("Atom #{}: {}".format(atoms_idx, ' '.join(nearest_words)))
Atom #883: -
Atom #40:
Atom #215:
Atom #688:
Atom #386:
Atom #676:
Atom #414:
Atom #127:
Atom #592:
Atom #703: - -
#np.savez_compressed('./data/mats/gamma_rus_fasttext_300d.npz', gamma)
#np.savez_compressed('./data/mats/dictionary_rus_fasttext_300d.npz', dictionary)
.
, (Word sense indection), , 1. — , . , , . , , , . , .
UPD: knagaev .